
A standardized benchmark for humanoid whole-body manipulation

William Thibault1 Francisco Javier Andrade Chavez2 Katja Mombaur3

Abstract— In this paper we focus on the evaluation of
humanoid manipulation skills while balancing on two feet. This
involves manipulation while standing and loco-manipulation
where the object is being manipulated while taking steps.
With this objective in mind, an initial study of whole-body
manipulation in a box manipulation scenario with two dif-
ferent motions using the University of Waterloo’s REEM-C,
“Seven”, is investigated to provide insight into a valuable setup,
comprehensive test protocols and useful performance metrics
based on real world data. The contribution of this paper is a
proposed benchmark for whole-body manipulation consisting
of the design of a test bed inspired by real use cases for
humanoid whole-body manipulation tasks, the definition of a set
of protocols to standardize the testing procedure and insightful
key performance indicators (KPIs) based on this initial study
with the real robot. The proposed benchmark for humanoid
whole-body manipulation is part of the EUROBENCH project
that aims at creating a benchmarking framework for robotic
systems performing locomotion related tasks.

I. INTRODUCTION

In order to enable human-centered robots such as hu-
manoid and wearable robots to move out of the lab into
the real world, it is important to assess their suitability for
given real world tasks and application domains in advance.
Benchmarking is considered as an important instrument for
evaluating robot performance and predicting how robots will
satisfy the specific needs of users. Recent benchmarking
efforts included a number of international robotics competi-
tions that received a lot of attention, such as the Cybathlon,
the DARPA Robotic Challenge, RoboCup, RoCKIn and the
European Robotics League. Often these competitions focus
on a more qualitative performance execution of specific tasks
as well as the required time in a game or race setting, but
there still is a clear lack of unified benchmarking scenarios
and quantified key performance indicators.

The research presented in this paper has been performed
in collaboration with the European project EUROBENCH,
which aims to create the first unified benchmarking frame-
work for robotic systems in Europe [1] and to set up two
benchmarking facilities accessible to the entire academic and
industrial robotics community. The goal is to allow compa-
nies and researchers to test the performance of their robots at
any stage of development and to get reliable information in
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advance about robots they may consider purchasing for given
tasks. The proposed benchmarks all consist of standardized
test beds, benchmarking protocols and key performance
indicators which will be implemented in a benchmarking
software. The focus is on locomotion related tasks, and
the benchmarks measure elementary locomotion skills with
respect to stability, robustness, and motions on different
terrains with inspiration from real world use cases.

An inciting work for the EUROBENCH project was Tor-
ricelli et al. [2], where the general design of a benchmarking
scheme for bipedal locomotion is described. The scheme
involves classification of different bipedal balancing and
locomotion tasks such as stair walking, balancing under dis-
turbances like pushes or under constant weight and walking
on compliant terrain. To be able to benchmark the motions,
it proposes a benchmark scheme for motor abilities that
is classified into performance and human likeness where
metrics like success rate, energetic and mechanical cost of
transport and joint torques are measured. This is followed
by a scheme for defining benchmarking protocols that would
allow collaborators to improve upon existing protocols or de-
velop new ones. This work, supported by projects like H2R,
BALANCE, KoroiBot, WALKMAN and BioMot, motivated
the development of the unified benchmarking framework
that EUROBENCH aims to create. This work along with
the KoroiBot project inspired locomotion benchmarking of
the HRP-2 robot [3]. A range of locomotion tasks [4]
were considered including flat ground walking, walking on
a beam, step stone walking and stair walking fulfilling a
number of the bipedal locomotion skills from Torricelli et al.
[2]. To measure the performance of the HRP-2 performance
indicators included success rate, mechanical joint energy,
actuators energy, cost of transport and duration of the ex-
periment, again inspired from Torricelli et al. [2]. While
bipedal locomotion tasks are well considered, there is a lack
of consideration for balancing or locomotion tasks involving
manipulation. This work will refer to these tasks as whole-
body manipulation and loco-manipulation, respectively.

Benchmarks for bimanual manipulation have been pro-
posed by Chatzilygeroudis et al. through the performance of
tasks such as watchmaking and belt assembly of engines [5]
while Sotiropoulos et al. proposes a method to evaluate soft
hand grasping through the grasping of fruits and vegetables
[6]. Other grasping and manipulation benchmarks include a
benchmark for grasp planning [7], the box and blocks test
for dexterity [8] and in-hand manipulation [9]. These are not
very useful when trying to quantify performance for manip-
ulation (typically bimanual) of larger objects which requires
the robot to reach the limits of its kinematic workspace and



to go to the edge of dynamic stability margins.
The balance of a humanoid robot while performing a

manipulation task has been analyzed in simulation using a
generalized zero-moment point approach to determine the
robot’s ability to balance during manipulation tasks like
pushing or pulling objects [10]. Another metric proposed
was the dynamic reconfiguration manipulability shape index,
based on other manipulability metrics like dynamic and
reconfiguration manipulability, that is used to evaluate a
bipedal robot’s walking posture for a greater dynamical
shape changeability through a humanoid’s redundancy while
performing another task such as directing the head [11].
Whole-body balancing has also been considered by Sugi-
hara and Nakamura using the COG Jacobian to allow the
humanoid robot to balance while compensating for distur-
bances through cooperation of the whole-body [12]. Other
approaches to complex whole-body problems, include human
to humanoid motion re-targeting such as that done by Di
Fava et al. for multi-contact motions between the robot and
the environment using a multi-contact QP control formulated
framework [13] or a guided manipulation planning approach
such as that used by Dellin et al. for the DARPA Robotics
Challenge [14]. A planning method that exploits constrained
manifolds to increase planning speed has been successfully
implemented in humanoid robots for loco-manipulation tasks
[15]. The method was validated using two scenarios: opening
a door and pushing a cart. The only comparison metric used
was the time to complete the task. Similarly, others provide
methods for solving complex loco-manipulation tasks with
results in simulation only, but again the only metric provided
is time [16], [17]. Benchmarking of loco-manipulation tasks
with the Valkyrie were performed for box-picking and object
grasping on flat ground, uneven terrain and in restricted space
[18]. This benchmarking also used few metrics, only the
success rate and average time, but also more from a planning
perspective without strict protocols.

Most of the approaches mentioned above are able to
evaluate the state of balance of the robot while performing
a task. However this gives no objectively quantifiable data
to evaluate if the task was successful and what performance
level a given robot or control strategy was able to achieve
in the given task. Others provide few metrics like time or
success rate to compare and show improvement with respect
to a previous method. This does not provide insight into
how efficient the method is or how robust and repeatable it
is. This information will be very important when choosing
which robotic platform or algorithmic solution will be used
in the real world.

In this paper we focus on the evaluation of humanoid
manipulation skills while balancing on two feet. This in-
volves manipulation while standing and loco-manipulation
where the object is being manipulated while taking steps.
To provide more insight into this task we present an initial
study of a box manipulation scenario using the humanoid
robot REEM-C with an initial set of performance metrics
where two different control methods are compared. For
the initial study, we have chosen a setup with a single

Fig. 1: EUROBENCH benchmarking work flow with blue
highlighting the work in this paper.

shelving unit holding a box that must be manipulated in
a precise manner while remaining balanced as this is the
basis for many tasks that exist in warehouse and logistics
scenarios. From this simple scenario, we then propose a
design of a complete benchmarking scenario for whole-body
manipulation of humanoid robots. The contribution of this
paper is a proposed benchmark for whole-body manipulation
consisting of the design of a test bed inspired by real
use cases for humanoid whole-body manipulation tasks, the
definition of a set of protocols to standardize the testing
procedure and insightful key performance indicators (KPIs)
based on experiments from an initial study of a whole-body
box manipulation scenario. This benchmark is closely related
to another loco-manipulation benchmark we are developing
on object carrying between shelves at a larger distance,
in which the locomotion component with a load becomes
more important and which will be discussed in a later work.
Both benchmarks will be part of the EUROBENCH facility
for humanoid robots where they will be applied to general
humanoid robots visiting the facility or available there. In
this paper we propose a first version of the whole-body
manipulation benchmark for humanoid robots, using simple
manipulation tasks in the test bed by comparing two motion
generation strategies. Figure 1 shows the EUROBENCH
benchmarking flow with the blue showing what will be
covered in this work.

Section II explains the initial study performed including
the experimental setup, the performance metrics measured,
the humanoid robot “Seven” and the motion control methods.
Section III provides the results obtained in the initial study
with a comparison of control methods and an analysis of
the success at providing performance information on whole-
body manipulation. Section IV describes the proposed bench-
marking test bed, the protocols used in it and the KPIs after
considering insights from the initial study. Finally, Section
V contains the conclusions and future work.



II. AN INITIAL BOX MANIPULATION SCENARIO

A. Experimental Setup

As an initial study of whole-body manipulation tasks, a
box manipulation scenario acts as a reasonable test. Typical
humanoid application areas include manufacturing tasks such
as in airplanes and on ships, household tasks, healthcare or
support care and work in space to name a few. Whenever a
humanoid interacts with the environment many manipulation
scenarios can be broken down into a pick and place scenario.
The combination of many pick and place actions can be used
for more complex work such as in one of the previously
mentioned applications. Therefore, a shelving unit with a
box to be picked and placed from one shelf to another was
selected for the initial study as it serves as an excellent
example of a core whole-body manipulation task.

The shelving unit is an IKEA IVAR system that has a
depth of 0.5 m. This shelving system is readily available
worldwide and it is flexible as it allows for heights of shelves
to be easily varied. In the configuration used, the shelving
unit has three shelves where one is at a height below the
waist (0.14 m), another is at a height between the waist
and shoulders (0.780 m) and last at a height above the
shoulders (1.42 m). The humanoid robot REEM-C was used
for reference when gauging the heights as it is a human sized
humanoid robot and is the standard test robot that is used in
the EUROBENCH framework.

For the object to be manipulated, a regular cardboard box
was selected. The box dimensions are 0.5 m wide by 0.16 m
tall by 0.15 m deep and weighs 0.1 kg. This was selected as
an appropriate box for the initial study as the size requires
a bimanual manipulation treatment for the pick and place
motion and is not exceedingly heavy for the robot.

The shelving unit with the box on the middle shelf can be
seen in front of the robot “Seven” in Figure 2.

In this initial box manipulation study, the desired box
manipulation is that the box is picked from the middle shelf
and placed on the top shelf. The starting position of the box
will be at the edge of the middle shelf, centered horizontally,
and the ending position of the box will also be in a similar
configuration except on the top shelf. The box is placed at
the edge for this initial study to allow for easier access
to the object to be manipulated. As some error is to be
expected in the pick and place motion, the ending position
has two marked boundaries for different levels of error in the
placement of the box. The two error boundaries are for 2.5%
error and 5% error in the box placement. This error margin is
based on a percentage value of the shelf’s dimensions. If the
box is placed inside the marked boundary then the placement
is successful for that level of error. See Figure 2 for the
starting position of the box and the two error boundaries for
the ending location where within the inner edge of the green
tape indicates a placement accuracy of 2.5% and within the
inner edge of the blue tape indicates a placement accuracy
of 5%.

Fig. 2: Starting and Ending Locations for Box Manipulation

B. Performance Metrics

To measure the performance of the robot in the box manip-
ulation scenario several performance metrics were selected:

• Time to perform box manipulation (s)
• Success rate of 2.5% Placement Accuracy
• Success rate of 5% Placement Accuracy
• Cost of Operation (Amps · s/kg)
• Mechanical Work (J)
The cost of operation represents the current consumed by

the joints during the box manipulation motion for a box of a
given mass. These values are readily available from the motor
currents provided by the joint states published by ROS. To
calculate the cost of operation the following equation is used:

Cost =

n∑
j=1

∫ T

0

1

mO
|ij |dt (1)

where n is the number of motorized joints consuming
current, ij is the current of the motorized joint j, T is the
time to perform the entire motion (from start pose to rest
pose) and mO is the mass of the object being manipulated
(0.1 kg).

The mechanical work represents the work done by the
robot on the box to move it from the starting position to the
ending position. This metric requires joint torques, which
cannot always be provided by every robot, such as with
the REEM-C. As the joint torques cannot be determined
experimentally, they can be determined by performing a



dynamic simulation of the robot such as in Gazebo. The
mechanical work is calculated as follows:

W =

n∑
j=1

∫ T

0

|τj · ϕ̇j |dt (2)

where n is the number of joints, τj is the torque at joint j,
ϕ̇j is the angular velocity at joint j and T is the time to
perform the entire motion (from start pose to rest pose).

C. The Humanoid Robot “Seven”

Seven arrived at the University of Waterloo in the summer
of 2020. The robot has 68 degrees of freedom (DoF), which
includes each underactuated, 19 DoF hand. Seven weighs
80kg and is 1.64m tall. It has an IMU at the pelvis, four FT
sensors (two at the wrists and two at the ankles), lasers in the
feet, an Intel RealSense on the head as well as a NVIDIA
Jetson TX2. The REEM-C series come with a set of skills
that work right out of the box, such as walking, grasping,
whole-body control and text to speech. It is fully ROS based.
Another of the REEM-C series robots will be available at the
EUROBENCH robotics facility where it will be used as well
for benchmarking purposes.

D. Motion Generation and Control Methods

1) Separate Upper and Lower Body Controllers: The
separate upper and lower body control method uses one con-
troller to control the leg joints and another to control the torso
and arm joints of the robot. In this control method, a walking
controller and stabilizer is used for the lower body and only
controls the leg joints. This controller is the default walking
controller developed by PAL Robotics that implements Kajita
walking pattern generation [19] with IK for the leg joints and
a stabilizer. The upper body controller uses joint trajectory
controllers that are controlled by MoveIt! sending joint
trajectories based on calculated inverse kinematics results.
The torso joints are held at zero to help keep the center of
mass centered and the arms are used to manipulate the box.
This torso configuration is preferred by the default walking
controller for stability, otherwise the robot is likely to fall.
To create valid motion plans MoveIt! was configured to use
the TRAC-IK kinematics solver, as it handles joint limits
better than KDL, using a threaded approach to solving the
inverse kinematics with two different solvers and returning a
valid solution from whichever converges first [20]. The first
uses an inverse Jacobian method approach with Newton’s
method convergence that can avoid local minima that occur
from joint limits and the second approach uses a sequential
quadratic programming nonlinear optimization with quasi-
Newton methods [20]. The default planner in MoveIt!, Open
Motion Planning Library (OMPL), was used to generate
motion plans for the arms moving from one set of joint
positions to another. The joint positions for a given hand pose
were pre-calculated using MoveIt! then mirrored for both
arms as a bimanual motion planner was not yet developed.

To generate a motion with these controllers, MoveIt!’s
kinematic planning can be used to see if the box can be
reached given the robot’s starting position. If the box cannot

be reached then the robot can step forward to reach the box
and pick it up. Then MoveIt! can be used to determine if the
box can be placed on the top shelf without any collisions. If
this cannot be done then the robot can take a step back to
raise the box then step forward to place it. These motions
are generated offline then the joint trajectories and step
sequences are run on the controllers. Based on the simple
motion generation approach described the motion resulted
as shown in Figure 3.

As seen in Figure 3, the robot can be seen approaching
and retreating from the shelf depending on the stage of the
motion. This motion generation method and set of controllers
leverages the ability of humanoid robots to walk to a space in
which they can make use of a wider workspace. This makes
it easier to find solutions that can reach the desired height of
the objective while avoiding collisions with the environment.
It allows decoupling of the upper body from the lower body
for simpler planning while still finding a viable solution.

2) Whole-body Controller: The whole-body control
method uses a single controller to control all the joints in
the robot. In this control method a stack-of-tasks method is
used to control all the joints according to a set hierarchy of
tasks and plan a valid motion. To implement the whole-body
control method the Cartesian control software CartesI/O was
used to develop a hierarchical task description and specify
constraints using the OpenSoT math-of-tasks approach with a
quadratic programming solver [21]. This framework allowed
the joint and velocity limits to be applied with the task list
set to the following in descending order or priority:

1) Left and right foot Cartesian pose
2) Center of mass X and Y position, waist yaw
3) Left and right hand Cartesian pose, torso posture, left

and right arm joint 2 posture
4) Head posture, left and right leg posture

To generate a motion with this controller, the left hand, right
hand and center of mass can be sent Cartesian positions to
move to. By leveraging the fact that all the joints can be used
the robot can lean forward to grab the box then remove it
from the shelf and raise it in such as way that no collision
with the shelving unit occurs. These Cartesian trajectories
for the hands and center of mass are sent to CartesI/O,
which solves the stack-of-tasks online and the motion plan
is executed on the robot with the joint trajectory controllers.
Based on this simple Cartesian stack-of-tasks approach with
CartesI/O the motion occurs as shown in Figure 4.

Figure 4 shows how the robot leverages the legs, torso
and arms to reach for the object creating a crouching
motion. The whole-body control method allows for a valid
solution to be found in the constrained workspace, which
was done in simulation. By using the stack-of-tasks method
we can explore solutions that involve all the joints in the
robot, increasing our solution search space. Note that no
stabilization algorithm was used, but the center of mass was
shifted forward and backward to maintain balance. Also, no
collision avoidance was implemented, so the posture tasks
were enabled and disabled depending on the phase to avoid
collisions while increasing workspace. Although walking can



Fig. 3: Separate Upper and Lower Body Controllers Method Motion Sequence

Fig. 4: Whole-body Controller Method Motion Sequence

be performed with a stack-of-tasks method, it was not in
this motion generation approach as it was not necessary to
perform a valid motion and would require higher complexity.

III. EXPERIMENTAL RESULTS & DISCUSSION

To provide an initial study for the box manipulation,
the two motion approachs were executed 10 times for the
box placement from the front middle shelf to the front top
shelf for the 0.1 kg box. See Figure 1 for benchmarking
overview being performed. Table I shows the results for
the initial performance metrics. Note that in the case of the
time to perform the box manipulation, cost of operation and
mechanical work average metrics are presented.

TABLE I: Manipulation Key Performance Indicators

Performance Separate Upper and Whole-body
Metric Lower Body Control Method

Control Method
Average Time (s) 52.96 62.41

2.5% Placement Accuracy 60 % 100%
Success Rate

5% Placement Accuracy 100% 100%
Success Rate

Average Cost of Operation 10802.08 20245.68
(Amps · s/kg)

Average Mechanical 2585.25 561.69
Work (J)

Based on the experiments, the separate upper and lower
body control method was on average 10 seconds faster than
the whole-body control method. However, due to the swaying
of the robot during the walking phases, the stepping strategy
experienced a 40% lower placement accuracy success rate
for the 2.5%. When considering the 5% margin error, both
algorithms show equally full 100% success rate. The cost
of operation shows better performance for the separate
upper and lower body control method, since the values are
integrated over time, the 10 second difference generates
a considerable contrast in results. The whole-body control
method shows almost double the cost of operation compared
to the other control method. From the mechanical work point
of view, using the whole-body instead of walking requires
less mechanical work, even while taking longer to finish the
task. The separate upper and lower body control method
takes almost five times the mechanical work of the whole-
body control strategy.

One consideration for benchmarking whole-body manipu-
lation that was noticed during this initial study is the need for
a greater variety of motions and test objects. While the initial
study provided some insight into a humanoid performing
a whole-body box manipulation, the variety of motions is
fairly limited if only a single shelf is used as only vertical
lifting motions are required. Additional shelving units could
be useful to introduce lateral box manipulation motions
and encourage more challenging manipulation combinations.



Improved testing for how low or high an object can be
grasped from is another possible metric of interest. In this
initial study the box motions were very prescribed, but
more complex manipulations could be tested using a more
random and automated pick and place indication system
that the robot must discern in real time. Also, a greater
grasping possibilities for the robot, such as handles to grip,
would be useful along with varying weight. These are all
important factors to consider when selecting a robot for a
whole-body manipulation task as the robots ability to handle
these varying motions or objects could affect the suitable
applications.

IV. A COMPLETE BENCHMARK FOR WHOLE-BODY
MANIPULATION

A. Test Bed

To benchmark the ability of a robot’s whole-body ma-
nipulation abilities, a test bed composed of three shelving
units surrounding a square floor space of 1 m2 on three
sides is proposed. This provides a constrained workspace
similar to that in industrial or logistics settings. Note that
the workspace is kept small as this benchmark aims at
benchmarking manipulation abilities with little locomotion
involved, such as only taking a few steps. The pick and carry
test bed that will be developed in future work will include
a larger workspace to better benchmark loco-manipulation.
Each shelving unit contains three shelves at heights that
can be varied due to the flexibility of the shelving unit.
To benchmark whole-body manipulation motions similar to
those a human would perform when moving objects around,
heights below the waist, below the shoulders but above the
waist and above the shoulders heights are selected. These
heights are equally spaced and selected as 0.14m, 0.78m and
1.42m, respectively. This shelving setup allows for vertical,
lateral and more complex manipulation combinations. Each
shelf in the test bed contains a target for the location of the
box to be picked from and placed at as well as an multi-
colour LED strip along the front edge to indicate where the
objects should be picked from and placed. Since the ability to
replicate the setup is an important feature for benchmarking
test beds, we propose using shelving units of the IKEA IVAR
system with a depth of 0.5 m that are available worldwide,
as previously noted.

The main object to be manipulated is an open top box,
such as a standard milk crate, with the dimensions are 0.33
m wide by 0.33 m deep by 0.28 m tall. This object has
handles that can be used for the robot to grasp or it can be
grasped on either side with friction grip. Given that the top
is open weights can be easily added to increase the mass of
the object. The test object and dimensions can be seen in
Figure 5.

A model of the test bed and key dimensions can be seen
in Figure 6 with the standard milk crate for manipulation
and REEM-C, the standard test robot for EUROBENCH.
Further details are provided with the complete benchmark
description.

(a) Outer Dimensions (b) Handle Dimensions

Fig. 5: Standard Whole-body Manipulation Benchmarking
Open Top Box (Milk Crate)

B. Protocols

To provide a comprehensive set of tests on the robot’s
whole-body manipulation abilities, four protocols can be
used to assess the robot’s performance.

1) Protocol 1: Predefined Frontal Placement: The first
protocol tests the ability for the robot to perform whole-
body box manipulations on the shelf directly in front of the
robot. This protocol involves picking an object from a shelf
in front of the robot and placing it on another shelf in front in
a predefined location for several runs. A single run contains
10 placements that are recorded for evaluation with respect to
the key performance indicators defined for the test bed. After
each successful completion of a run the weight of the object
is increased according to the user’s choice. When performing
a run for any of the predefined protocols the robot has 15
minutes to complete the run. In this protocol the weight is
added to the open top box described earlier.

2) Protocol 2: Predefined Lateral Placement: The second
protocol tests the ability for the robot to perform whole-body
box manipulations on the shelves to the side of the robot.
This protocol involves picking an object from a shelf in front
or to the side of the robot and placing it on another shelf of
the same height in front or to the side in a predefined location
for several runs. In similar fashion to the first protocol, each
run consists of 10 placements with a 15 minute time limit
that are recorded for evaluation and weight is added to the
open top box after each run as selected by the user.

3) Protocol 3: Predefined Combined Placement: The third
protocol tests the ability for the robot to perform whole-
body box manipulations on the shelves in front and to the
side of the robot. This protocol involves picking an object
from a shelf in front or to the side of the robot and placing
it on another shelf in front or to the side of the robot of
varying height in a predefined location for several runs.
Again, similar to the first protocol, each run consists of 10
placements with a 15 minute time limit that are recorded for
evaluation with weight being added to the open top box after
each run according to the user.

4) Protocol 4: Variable Combined Placement: The fourth
protocol tests the ability for the robot to perform whole-body
box manipulations on the shelves in front and to the side of
the robot in a variable manner. This protocol requires the
robot to pick the object to be moved and place the object in



(a) Rear View (b) Side View

Fig. 6: Manipulation Test Bed Model

the correct location according to visual indications from the
LED lights on the front of the shelves where different colours
indicate different pick and place locations. The positions in
a single run vary as well as the weights of the boxes used as
objects. However, the maximum weight will be only as high
as what the robot can overcome. A fixed time of 20 minutes
is given for this protocol and the test is complete once the
20 minutes is passed or the robot can no longer manipulate
any more objects.

5) Performing a Protocol: With each protocol being com-
posed of several runs, the rules for performing the protocols
are all very similar and can be described by explaining how
to perform a single run. A run is performed by placing the
object at the pick location containing the desired weight. The
robot can be placed anywhere inside the 1m2 workspace as
long as all segments of the robot are within this workspace
and not within the shelves. When the robot starts its motion,
the time and joint data from the robot is recorded until
the robot completes the box placements or time runs out.
After each box placement the robot must retreat to the initial
position it started from. The recorded data is then put into the
desired CSV file format for performance processing. Further
details, including pick and place orders, are provided with
the complete benchmark description.

C. Key Performance Indicators

For each protocol performed with the robot a number
of KPIs will be measured to determine the performance of
the robot for the given task. These KPIs are generated as
averages for all the box placements performed in a protocol.
Table II contains the KPIs used for benchmarking.

It is worth noting that this benchmark is created mainly
for humanoid robots. This benchmarking setup can be used
for non-humanoid robots, though these robots would suffer
in the human-likeness KPI and benchmarking these robots

is not the main goal. Also, another separate benchmark
for wearable devices and exoskeletons is provided in the
EUROBENCH project for manipulation related tasks. In
the EUROBENCH framework, to calculate KPIs for the
robot’s performance a set of CSV files from the experiments
recording the joint data from the robot is provided to the
software framework that automatically computes the KPIs.
For the REEM-C robot, the joint data includes joint angle,
joint velocity and joint current measures. In the case of
whole-body manipulation a few additional result CSV files
are provided detailing external details like the success rate,
placement error and object weight. For further details on the
benchmark please see the complete description.

V. CONCLUSION & OUTLOOKS

An initial study of whole-body manipulation in a box
manipulation scenario was provided to further investigate
benchmarking whole-body manipulation of humanoid robots.
This initial study used a 0.1 kg box on an IKEA IVAR shelf
with the humanoid robot “Seven” for two different control
methods to lift the box from the middle shelf to the top shelf.

This initial study allowed us to begin to compare two
control methods and also identify other important aspects
to consider for whole-body manipulation benchmarking.
Then we proposed a complete benchmark for the whole-
body manipulation scenario of EUROBENCH with a more
complex test bed composed of three IVAR shelving units,
objects of varying weight, four protocols of varying motion
requirements and difficulty and a comprehensive set of key
performance indicators.

For future works, the main goal is to construct the com-
plete test bed and collect an initial data set for the whole-
body manipulation benchmark. In the case of placement
accuracy this could also be done with a motion capture
system or install cameras on the test bed and use ArUco



TABLE II: Key Performance Indicators for the Bipedal Manipulation Test Bed

Name Description/Formulation
Success Rate (%) The ratio of objects placed on the correct shelf
Placement Position Error (m) The average position error of the object placed on the shelf from the target location of the shelf
Placement Orientation Error (rad) The average orientation error of the object placed on the shelf from the target location of the shelf
Time (s) The average time for the correct placement of an object
Maximum Weight (kg) The maximum weight of an object with which the robot can perform a successful placement
Shelf Heights Reached (m) A list of the attainable shelf heights that the robot could successfully perform picks from and placements at
Mechanical Work (W) The average absolute mechanical work calculated as in Equation 2
Cost of Operation (Amps · s/kg) The average energy consumed per placement and mass of objects calculated as in Equation 1
Power Consumed (W) The average total amount of power consumed from the battery including all actuators, sensors and PCs
Human-likeness in Time (s) The average difference in time of the robot trajectories to human trajectories performing the same task
Human-likeness in Path (m) The average difference in position of the robot end effectors to human hands performing the same task

markers on the objects to determine the error. To determine
the human-likeness KPIs, human motion capture will be
performed to provide values for a comparison and metric
calculation. Also, the generation of randomized locations
triggered when the robot has finished a placement will need
to be consider for the fourth protocol.

After gathering a complete data set for the benchmark,
we want to employ optimal control strategies to improve the
results on the benchmark and generate new control methods
that may consider stabilization of the object while walking.
An analysis of the bimanual workspace could certainly help
find more optimal solutions and obtain a better score in
the benchmark. To evaluate the fourth protocol perception
and planning layers have to be included into the overall
solution to the task. Furthermore, we would like to perform
the benchmark with a second humanoid robot to compare
the performance of robots, such as with the University of
Waterloo’s TALOS.

As part of the continued development of benchmarking
scenarios we will also work on the pick and carry test bed.

ACKNOWLEDGMENT

We gratefully acknowledge funding from the Tri-Agency
Canada Excellence Research Chair program and the Univer-
sity of Waterloo.

REFERENCES

[1] “Eurobench project.” [Online]. Available: https://eurobench2020.eu/
[2] D. Torricelli, J. Gonzalez-Vargas, J. F. Veneman, K. Mombaur,

N. Tsagarakis, A. J. del Ama, A. Gil-Agudo, J. C. Moreno, and
J. L. Pons, “Benchmarking bipedal locomotion: A unified scheme for
humanoids, wearable robots, and humans,” IEEE Robotics Automation
Magazine, vol. 22, no. 3, pp. 103–115, 2015.

[3] O. Stasse, K. Giraud-Esclasse, E. Brousse, M. Naveau,
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